Lightningbeam/daw-backend/src/audio/node_graph/nodes/pan.rs

169 lines
4.5 KiB
Rust

use crate::audio::node_graph::{AudioNode, NodeCategory, NodePort, Parameter, ParameterUnit, SignalType};
use crate::audio::midi::MidiEvent;
use std::f32::consts::PI;
const PARAM_PAN: u32 = 0;
/// Stereo panning node using constant-power panning law
/// Converts mono audio to stereo with controllable pan position
pub struct PanNode {
name: String,
pan: f32,
left_gain: f32,
right_gain: f32,
inputs: Vec<NodePort>,
outputs: Vec<NodePort>,
parameters: Vec<Parameter>,
}
impl PanNode {
pub fn new(name: impl Into<String>) -> Self {
let name = name.into();
let inputs = vec![
NodePort::new("Audio In", SignalType::Audio, 0),
NodePort::new("Pan CV", SignalType::CV, 1),
];
let outputs = vec![
NodePort::new("Audio Out", SignalType::Audio, 0),
];
let parameters = vec![
Parameter::new(PARAM_PAN, "Pan", -1.0, 1.0, 0.0, ParameterUnit::Generic),
];
let mut node = Self {
name,
pan: 0.0,
left_gain: 1.0,
right_gain: 1.0,
inputs,
outputs,
parameters,
};
node.update_gains();
node
}
/// Update left/right gains using constant-power panning law
fn update_gains(&mut self) {
// Constant-power panning: pan from -1 to +1 maps to angle 0 to PI/2
let angle = (self.pan + 1.0) * 0.5 * PI / 2.0;
self.left_gain = angle.cos();
self.right_gain = angle.sin();
}
}
impl AudioNode for PanNode {
fn category(&self) -> NodeCategory {
NodeCategory::Utility
}
fn inputs(&self) -> &[NodePort] {
&self.inputs
}
fn outputs(&self) -> &[NodePort] {
&self.outputs
}
fn parameters(&self) -> &[Parameter] {
&self.parameters
}
fn set_parameter(&mut self, id: u32, value: f32) {
match id {
PARAM_PAN => {
self.pan = value.clamp(-1.0, 1.0);
self.update_gains();
}
_ => {}
}
}
fn get_parameter(&self, id: u32) -> f32 {
match id {
PARAM_PAN => self.pan,
_ => 0.0,
}
}
fn process(
&mut self,
inputs: &[&[f32]],
outputs: &mut [&mut [f32]],
_midi_inputs: &[&[MidiEvent]],
_midi_outputs: &mut [&mut Vec<MidiEvent>],
_sample_rate: u32,
) {
if inputs.is_empty() || outputs.is_empty() {
return;
}
let audio_input = inputs[0];
let output = &mut outputs[0];
// Audio signals are stereo (interleaved L/R)
// Process by frames, not samples
let frames = audio_input.len() / 2;
let output_frames = output.len() / 2;
let frames_to_process = frames.min(output_frames);
for frame in 0..frames_to_process {
// Get base pan position
let mut pan = self.pan;
// Add CV modulation if connected
if inputs.len() > 1 && frame < inputs[1].len() {
let cv = inputs[1][frame]; // CV is mono
// CV is 0-1, map to -1 to +1 range
pan += (cv * 2.0 - 1.0);
pan = pan.clamp(-1.0, 1.0);
}
// Update gains if pan changed from CV
let angle = (pan + 1.0) * 0.5 * PI / 2.0;
let left_gain = angle.cos();
let right_gain = angle.sin();
// Read stereo input
let left_in = audio_input[frame * 2];
let right_in = audio_input[frame * 2 + 1];
// Mix both input channels with panning
// When pan is -1 (full left), left gets full signal, right gets nothing
// When pan is 0 (center), both get equal signal
// When pan is +1 (full right), right gets full signal, left gets nothing
output[frame * 2] = (left_in + right_in) * left_gain; // Left
output[frame * 2 + 1] = (left_in + right_in) * right_gain; // Right
}
}
fn reset(&mut self) {
// No state to reset
}
fn node_type(&self) -> &str {
"Pan"
}
fn name(&self) -> &str {
&self.name
}
fn clone_node(&self) -> Box<dyn AudioNode> {
Box::new(Self {
name: self.name.clone(),
pan: self.pan,
left_gain: self.left_gain,
right_gain: self.right_gain,
inputs: self.inputs.clone(),
outputs: self.outputs.clone(),
parameters: self.parameters.clone(),
})
}
}